Contoh. f(x, y) = x’y + xy’
+ y’ disederhanakan menjadi
f(x, y) = x’ + y’
Penyederhanaan
fungsi Boolean dapat dilakukan dengan 3 cara:
- Secara aljabar
- Menggunakan Peta Karnaugh
- Menggunakan metode Quine Mc Cluskey (metode Tabulasi)
1. Penyederhanaan
Secara Aljabar
Contoh:
- f(x, y) = x + x’y
= (x + x’)(x + y)
= 1 × (x + y )
= x + y
- f(x, y, z) = x’y’z + x’yz + xy’
= x’z(y’
+ y) + xy’
= x’z + xy’
- f(x, y, z) = xy + x’z + yz = xy + x’z + yz(x + x’)
= xy + x’z + xyz + x’yz
= xy(1
+ z) + x’z(1 + y) = xy + x’z
x
|
Y
|
z
|
xy
|
xy + x’z
|
X’z
|
X’yz
|
xyz
|
xy + x’z +xyz + x’yz
|
yz
|
Yz+x’z
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
1
|
1
|
1
|
1
|
0
|
0
|
1
|
0
|
1
|
0
|
1
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
1
|
1
|
0
|
1
|
1
|
1
|
0
|
1
|
1
|
1
|
1
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
1
|
0
|
1
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
1
|
1
|
0
|
1
|
1
|
0
|
0
|
0
|
1
|
0
|
0
|
1
|
1
|
1
|
1
|
1
|
0
|
0
|
1
|
1
|
1
|
1
|
2. Peta Karnaugh
a. Peta
Karnaugh dengan dua peubah
y
0
1
|
m0
|
m1
|
x 0
|
x’y’
|
x’y
|
|
m2
|
m3
|
1
|
xy’
|
xy
|
b. Peta
dengan tiga peubah
|
|
|
|
|
|
|
yz
00
|
01
|
11
|
10
|
|
m0
|
m1
|
m3
|
m2
|
|
x 0
|
x’y’z’
|
x’y’z
|
x’yz
|
x’yz’
|
|
m4
|
m5
|
m7
|
m6
|
|
1
|
xy’z’
|
xy’z
|
xyz
|
xyz’
|
Contoh. Diberikan tabel kebenaran, gambarkan Peta Karnaugh.
x
|
y
|
z
|
f(x, y, z)
|
|
|
0
|
0
|
0
|
0
|
|
|
0
|
0
|
1
|
0
|
|
|
0
|
1
|
0
|
1
|
|
|
0
|
1
|
1
|
0
|
|
|
1
|
0
|
0
|
0
|
|
|
1
|
0
|
1
|
0
|
|
|
1
|
1
|
0
|
1
|
|
|
1
|
1
|
1
|
1
|
|
|
|
yz
00
|
01
|
11
|
10
|
x 0
|
0
|
0
|
0
|
1
|
1
|
0
|
0
|
1
|
1
|
|
|
|
|
|
b. Peta dengan
empat peubah
|
|
|
|
|
|
|
yz
00
|
01
|
11
|
10
|
|
m0
|
m1
|
m3
|
m2
|
wx 00
|
w’x’y’z’
|
w’x’y’z
|
w’x’yz
|
w’x’yz’
|
|
|
m4
|
m5
|
m7
|
m6
|
|
01
|
w’xy’z’
|
w’xy’z
|
w’xyz
|
w’xyz’
|
|
m12
|
m13
|
m15
|
m14
|
|
11
|
wxy’z’
|
wxy’z
|
wxyz
|
wxyz’
|
|
m8
|
m9
|
m11
|
m10
|
|
10
|
wx’y’z’
|
wx’y’z
|
wx’yz
|
wx’yz’
|
Contoh.
Diberikan tabel kebenaran, gambarkan Peta Karnaugh.
w
|
x
|
y
|
z
|
f(w, x, y, z)
|
|
|
0
|
0
|
0
|
0
|
0
|
|
|
0
|
0
|
0
|
1
|
1
|
|
|
0
|
0
|
1
|
0
|
0
|
|
|
0
|
0
|
1
|
1
|
0
|
|
|
0
|
1
|
0
|
0
|
0
|
|
|
0
|
1
|
0
|
1
|
0
|
|
|
0
|
1
|
1
|
0
|
1
|
|
|
0
|
1
|
1
|
1
|
1
|
|
|
1
|
0
|
0
|
0
|
0
|
|
|
1
|
0
|
0
|
1
|
0
|
|
|
1
|
0
|
1
|
0
|
0
|
|
|
1
|
0
|
1
|
1
|
0
|
|
|
1
|
1
|
0
|
0
|
0
|
|
|
1
|
1
|
0
|
1
|
0
|
|
|
1
|
1
|
1
|
0
|
1
|
|
|
1
|
1
|
1
|
1
|
0
|
|
|
|
yz
00
|
01
|
11
|
10
|
wx 00
|
0
|
1
|
0
|
1
|
01
|
0
|
0
|
1
|
1
|
11
|
0
|
0
|
0
|
1
|
10
|
0
|
0
|
0
|
0
|
|
|
|
|